purity, and it appears at present as if the only plan would be to use a chemically pure nickel crucible in making it, for no crucible will withstand the action of fused sodium dioxide. Porcelain, iron, silver, gold and platinum crucibles are rapidly attacked.

The presence of water in this compound seems curious, but it may be due to the presence of sodium hydroxide in the sodium dioxide. Again it may be due to the water added to dissolve the soluble residue from the crystals. The first explanation seems to be the more plausible since the crystals are formed in the mass while it is fused, and they are not produced upon the addition of the water. If such is the case it would seem that the water driven off between $130^{\circ} \mathrm{C}$. and $240^{\circ} \mathrm{C}$. is from the breaking down of a true hydrate, rather than the expulsion of water of crystallization.

A cobalto-cobaltic hydrate, $\mathrm{Co}_{3} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$, has been described, ${ }^{1}$ but it was obtained by exposing to moist air, $\mathrm{Co}_{3} \mathrm{O}_{4}$, prepared by heating cobalt carbonate. $\mathrm{Ni}_{3} \mathrm{O}_{4}$, prepared by heating nickelonickelic hydrate to $240^{\circ} \mathrm{C}$. is hygroscopic and absorbs about seven and four-tenths per cent. of water from the air at $30^{\circ} \mathrm{C}$., which is completely lost at $110^{\circ} \mathrm{C}$., showing that no hydrate is formed under these conditions.

The study of the action of fused sodium dioxide on the metals will be continued here, and it is hoped that some more data can be contributed soon.

Vanderbilt University.

TABLE OF FACTORS.

By Edmund H. Miller and J. A. Mathews. Received August 6, 8896 .
TOMIC masses, based on $\mathrm{O}=\mathrm{I} 6$, taken from an article by F. W. Clarke, this Journal, March, 1896.

AlPO_{4}	Required.	Factor.	Logarithm.
	A1.	0.221976	I. 346307 I
	$\mathrm{Al}_{2} \mathrm{O}_{3}$.	0.418489	$\overline{\mathrm{I}} .6216835$
$\mathrm{Sb}_{2} \mathrm{O}_{4}$	Sb.	0.790067	$\overline{\mathrm{I}} .8976643$
$\mathrm{Sb}_{2} \mathrm{~S}_{8}$	Sb.	0.714570	I. 8540446
$\mathrm{As}_{2} \mathrm{~S}_{3}$	As.	0.609522	I. 7849890
$\mathrm{Mg}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$	As.	0.483268	I. 6841870
$\mathrm{Ag}_{3} \mathrm{AsO}_{4}$	As.	0.162234	I.2101418
BaSO_{4}	BaO .	0.657088	I. 8176234

1 Genth and Gibbs: Am. J. Sci., 23, 257.

TABLE OF FACTORS.

	Required. SO_{3}.	Factor. 0.342912	Logarithm. $\overline{\mathrm{I}} .5351829$
	S.	-. 137342	- 1.1378 I 2 I
$\mathrm{Bi}_{2} \mathrm{O}_{3}$	$B \mathrm{Bi}$.	0.896600	I. 9525990
CaCO_{3}	CaO .	0.560296	I. 7484173
CaSO_{4}	CaO .	0.415899	I. 6147904
	CaCO_{3}.	0.735145	I. 8663731
CO_{2}	C.	0.272893	I. 4359916
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	Cr .	0.684791	I. 835558 I
$3 \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{CoSO}_{4}$	Co.	0.141511	I. 1507892
CuO	Cu .	0.798995	1.9025440
$\mathrm{Cu}_{2} \mathrm{~S}$	Cu .	0.798644	I. 902353 I
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Fe .	0.700076	I. 8451446
Fe	$\mathrm{Fe}_{2} \mathrm{O}_{3}$.	I. 42842	0.1548554
	FeO ,	I. 2856 I	0.1091100
	$\mathrm{Fe}_{3} \mathrm{O}_{4}$.	I. 38082	-. 1401359
PbCrO_{4}	Pb .	. 640500	I. 8065193
PbSO_{4}	Pb .	. 682927	I. 8343742
$\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	P .	.27868I	I. 4445 1076
	$\mathrm{P}_{2} \mathrm{O}_{5}$.	. 638038	I. 8048465
	MgO .	. 361962	I. 558663 I
	MgCO_{3}.	. 757343	I. 8792934
$\mathrm{Mn}_{3} \mathrm{O}_{4}$	Mn.	. 720490	I. 8576283
$\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{\text {T }}$	Mn.	. 387226	I. 5879648
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$	Pt.	. 439205	I. 6426669
	N.	.06328I	2.8012744
	NH_{3}.	.0769II	2.885988 I
	$\mathrm{NH}_{4} \mathrm{Cl}$.	. 241235	I. 3824396
	N.	. 14408 I	I. 1586075
$\underset{\left(\mathrm{Pt}_{4}\right)_{2} \mathrm{PtCl}_{6}}{ }$	NH_{3}.	.175114	T. 2433212
	$\mathrm{NH}_{3} \mathrm{Cl}$.	. 549253	I. 7397727
$\mathrm{K}_{2} \mathrm{PtCl}_{6}$	KC1.	. 30695 I	I. 4870695
	$\mathrm{K}_{2} \mathrm{O}$.	. 193944	I. 2876767
KCl	$\mathrm{K}_{2} \mathrm{O}$.	. 631840	I. 8006072
$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{K}_{2} \mathrm{O}$.	. 540593	1.7328706
SiO_{2}	Si.	.470199	1.6722814
AgBr	Br .	. 425560	I. 6289611
AgI	I.	. 540313	I. 7326479
AgCl	Cl .	. 247262	I. 3931579
	Ag.	. 752738	1.8766436
NaCl	$\mathrm{Na}_{2} \mathrm{O}$.	. 530769	1.7249057
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\mathrm{Na}_{2} \mathrm{O}$.	. 436801	1.6402836
SnO_{3}	Sn .	.788i50	I. 8966087
TiO_{2}	Ti.	. 600749	I. 7786928
ZnO	Zn.	. 803464	I. 9049663
$\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	Zn.	. 429115	I. 6325737
$\mathrm{ZnNH}_{4} \mathrm{PO}_{4}$	Zn.	. 366438	I. 564001 I

